§ 192.475 Internal corrosion control: General. - (a) Corrosive gas may not be transported by pipeline, unless the corrosive effect of the gas on the pipeline has been investigated and steps have been taken to minimize internal corrosion. - (b) Whenever any pipe is removed from a pipeline for any reason, the internal surface must be inspected for evidence of corrosion. If internal corrosion is found— - (1) The adjacent pipe must be investigated to determine the extent of internal corrosion; - (2) Replacement must be made to the extent required by the applicable paragraphs of §§ 192.485, 192.487, or 192.489; and - (3) Steps must be taken to minimize the internal corrosion. - (c) Gas containing more than 0.25 grain of hydrogen sulfide per 100 cubic feet (5.8 milligrams/m^{.3}) at standard conditions (4 parts per million) may not be stored in pipe-type or bottle-type holders. [Amdt. 192–4, 36 FR 12302, June 30, 1971, as amended by Amdt. 192–33, 43 FR 39390, Sept. 5, 1978; Amdt. 192–78, 61 FR 28785, June 6, 1996; Amdt. 192–85, 63 FR 37504, July 13, 1998] ### § 192.476 Internal corrosion control: Design and construction of transmission line. - (a) Design and construction. Except as provided in paragraph (b) of this section, each new transmission line and each replacement of line pipe, valve, fitting, or other line component in a transmission line must have features incorporated into its design and construction to reduce the risk of internal corrosion. At a minimum, unless it is impracticable or unnecessary to do so, each new transmission line or replacement of line pipe, valve, fitting, or other line component in a transmission line must: - (1) Be configured to reduce the risk that liquids will collect in the line; - (2) Have effective liquid removal features whenever the configuration would allow liquids to collect; and - (3) Allow use of devices for monitoring internal corrosion at locations with significant potential for internal corrosion. - (b) Exceptions to applicability. The design and construction requirements of paragraph (a) of this section do not apply to the following: - (1) Offshore pipeline; and - (2) Pipeline installed or line pipe, valve, fitting or other line component replaced before May 23, 2007. - (c) Change to existing transmission line. When an operator changes the configuration of a transmission line, the operator must evaluate the impact of the change on internal corrosion risk to the downstream portion of an existing onshore transmission line and provide for removal of liquids and monitoring of internal corrosion as appropriate. - (d) Records. An operator must maintain records demonstrating compliance with this section. Provided the records show why incorporating design features addressing paragraph (a)(1), (a)(2), or (a)(3) of this section is impracticable or unnecessary, an operator may fulfill this requirement through written procedures supported by asbuilt drawings or other construction records. $[72~{\rm FR}~20059,\,{\rm Apr.}~23,\,2007]$ ## § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons or other suitable means must be used to determine the effectiveness of the steps taken to minimize internal corrosion. Each coupon or other means of monitoring internal corrosion must be checked two times each calendar year, but with intervals not exceeding 7½ months. [Amdt. 192-33, 43 FR 39390, Sept. 5, 1978] # § 192.479 Atmospheric corrosion control: General. - (a) Each operator must clean and coat each pipeline or portion of pipeline that is exposed to the atmosphere, except pipelines under paragraph (c) of this section. - (b) Coating material must be suitable for the prevention of atmospheric corrosion. - (c) Except portions of pipelines in offshore splash zones or soil-to-air interfaces, the operator need not protect #### § 192.481 from atmospheric corrosion any pipeline for which the operator demonstrates by test, investigation, or experience appropriate to the environment of the pipeline that corrosion will— - (1) Only be a light surface oxide; or - (2) Not affect the safe operation of the pipeline before the next scheduled inspection. [Amdt. 192-93, 68 FR 53901, Sept. 15, 2003] # § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: | If the pipeline is lo-
cated: | Then the frequency of inspection is: | |----------------------------------|--| | Onshore | At least once every 3 calendar years,
but with intervals not exceeding 39
months | | Offshore | At least once each calendar year, but
with intervals not exceeding 15
months | - (b) During inspections the operator must give particular attention to pipe at soil-to-air interfaces, under thermal insulation, under disbonded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water. - (c) If atmospheric corrosion is found during an inspection, the operator must provide protection against the corrosion as required by §192.479. [Amdt. 192-93, 68 FR 53901, Sept. 15, 2003] #### § 192.483 Remedial measures: General. - (a) Each segment of metallic pipe that replaces pipe removed from a buried or submerged pipeline because of external corrosion must have a properly prepared surface and must be provided with an external protective coating that meets the requirements of § 192.461. - (b) Each segment of metallic pipe that replaces pipe removed from a buried or submerged pipeline because of external corrosion must be cathodically protected in accordance with this subpart. - (c) Except for cast iron or ductile iron pipe, each segment of buried or submerged pipe that is required to be repaired because of external corrosion must be cathodically protected in accordance with this subpart. ### § 192.485 Remedial measures: Transmission lines. - (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the MAOP of the pipeline must be replaced or the operating pressure reduced commensurate with the strength of the pipe based on actual remaining wall thickness. However, corroded pipe may be repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting so closely grouped as to affect the overall strength of the pipe is considered general corrosion for the purpose of this paragraph. - (b) Localized corrosion pitting. Each segment of transmission line pipe with localized corrosion pitting to a degree where leakage might result must be replaced or repaired, or the operating pressure must be reduced commensurate with the strength of the pipe, based on the actual remaining wall thickness in the pits. - (c) Under paragraphs (a) and (b) of this section, the strength of pipe based on actual remaining wall thickness may be determined by the procedure in ASME/ANSI B31G or the procedure in AGA Pipeline Research Committee Project PR 3-805 (with RSTRENG disk). Both procedures apply to corroded regions that do not penetrate the pipe wall, subject to the limitations prescribed in the procedures. [Amdt. 192–4, 36 FR 12302, June 30, 1971, as amended by Amdt. 192–33, 43 FR 39390, Sept. 5, 1978; Amdt. 192–78, 61 FR 28785, June 6, 1996; Amdt. 192–88, 64 FR 69664, Dec. 14, 1999] #### § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each segment of generally corroded distribution line pipe with a remaining wall thickness less than that required for the MAOP of the pipeline, or a remaining wall thickness less than 30 percent of the nominal wall thickness, must be replaced. However, corroded pipe may be